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Introduction

Locally bounded ordinary categories were (implicitly) introduced by
Freyd and Kelly in

I [3] P.J. Freyd and G.M. Kelly. Categories of continuous functors I.
Journal of Pure and Applied Algebra Vol. 2, Issue 3, 169-191, 1972.

as a context for proving reflectivity results for orthogonal
subcategories and categories of models.

The notion of locally bounded (symmetric monoidal closed) category
was then explicitly defined by Kelly in [5, Chapter 6] and used as the
basis for a general treatment of enriched limit theories.
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Introduction

Locally bounded categories subsume locally presentable categories
and many “topological” categories that are not locally presentable.

Speaking of locally presentable categories, in

I [4] G.M. Kelly. Structures defined by finite limits in the enriched
context I. Cahiers de Topologie et Géométrie Catégoriques
Différentielle 23, No. 1, 3-42, 1982.

Kelly defined the notion of a locally presentable V -category over a
locally presentable closed category V .

Kelly did define the notion of a locally bounded closed category V in
[5, Chapter 6], but never defined the notion of a locally bounded
V -category over such a V . That’s where this talk comes in!
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Locally bounded (ordinary) categories

Let’s start by reviewing the definition of a locally bounded (ordinary)
category. A factegory is a category C with a proper factorization
system (E ,M ). The factegory C is cocomplete if C is cocomplete
and has arbitrary cointersections (i.e. wide pushouts) of E -morphisms.

Given a small M -sink (mi : Ci → C )i∈I in C , its union can be defined
as the M -subobject m obtained from the (E ,M )-factorization∐

i

Ci
e−→

⋃
i

Ci
m−→ C .

The sink (mi )i is α-filtered if any sub-sink of size < α factors
through some mi .
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Locally bounded (ordinary) categories

A functor U : C → D between cocomplete factegories that preserves
M is said to preserve (α-filtered) M -unions if for any (α-filtered)
M -sink (mi )i with union m, Um is the union of the M -sink (Umi )i .
If U preserves M and preserves α-filtered M -unions, we also say that
U is α-bounded.

In particular, an object C ∈ obC of a cocomplete factegory C is
α-bounded if C (C ,−) : C → Set preserves α-filtered M -unions.

Finally, a set G ⊆ obC of a cocomplete factegory is an
(E ,M )-generator if for any C ∈ obC , the canonical morphism∐

G∈G

C (G ,C ) · G → C

lies in E (equivalently, the functors C (G ,−) : C → Set (G ∈ G ) are
jointly M -conservative [6]).
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Locally bounded (ordinary) categories

Definition (Kelly [5])

A locally α-bounded category is a cocomplete factegory C with an
(E ,M )-generator consisting of α-bounded objects.

Note the parallel with locally α-presentable categories: a locally
α-presentable category is a cocomplete category C with a strong generator
consisting of α-presentable objects.
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Examples

Any locally α-presentable category [3, 3.2.3], with
(E ,M ) = (StrongEpi,Mono) and the given strong generator of
α-presentable (and hence α-bounded) objects.

Any topological category over Set is locally ℵ0-bounded [11, 2.3],
with (E ,M ) = (Epi,StrongMono) and the generator consisting of
just the discrete object on {∗}.

Any cocomplete locally cartesian closed category with a generator and
arbitrary cointersections of epimorphisms, so that
(E ,M ) = (Epi,StrongMono). These include the concrete
quasitoposes of Dubuc [2].
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Locally bounded closed categories

We now recall Kelly’s definition of locally bounded symmetric monoidal
closed category:

Definition (Kelly [5])

A symmetric monoidal closed category V is locally α-bounded as a
closed category if V0 is locally α-bounded, the proper factorization
system (E ,M ) is enriched, the unit object I ∈ obV is α-bounded, and
G ⊗ G ′ is α-bounded for all G ,G ′ ∈ G .

For example: any symmetric monoidal closed category V with V0 locally
α-presentable [5, Chapter 6]; any commutative unital quantale; any
(cartesian closed) topological category over Set; any cocomplete locally
cartesian closed category with generator and arbitrary epi-cointersections
(e.g. any concrete quasitopos).
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V -factegories

For the remainder of the talk, V will be a locally α-bounded closed
category (sometimes a stronger assumption than needed).

An enriched factorization system (EC ,MC ) on a V -category C [7] is
compatible with (E ,M ) if each C (C ,−) : C → V (C ∈ obC )
preserves the right class.

A V -factegory is a V -category C with an enriched proper
factorization system (EC ,MC ) that is compatible with (E ,M ). The
V -factegory C is cocomplete if the V -category C is cocomplete and
has arbitrary (conical) cointersections of E -morphisms.
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Enriched (E ,M )-generators

Let C be a cocomplete V -factegory. A set G ⊆ obC is an enriched
(E ,M )-generator if for each C ∈ obC , the canonical morphism∐

G∈G C (G ,C )⊗ G → C lies in E .

A set G ⊆ obC is an enriched (E ,M )-generator iff the representable
V -functors C (G ,−) : C → V (G ∈ G ) are jointly M -conservative.
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Enriched α-bounded objects
Let C be a cocomplete V -factegory. An object C ∈ obC is an enriched
α-bounded object if C (C ,−) : C → V preserves α-filtered M -unions.

Definition

A locally α-bounded V -category is a cocomplete V -factegory C with an
enriched (E ,M )-generator G consisting of enriched α-bounded objects.

Note the parallel with locally α-presentable V -categories: a locally
α-presentable V -category is a cocomplete V -category with an
enriched strong generator of enriched α-presentable objects [4, 3.1].

If V is a locally α-bounded closed category with ordinary
(E ,M )-generator G , then V is itself a locally α-bounded V -category
with enriched (E ,M )-generator G .

Any locally bounded V -category is total and complete.
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Bounding right adjoints

The following notion of bounding right adjoint has proved to be
fundamental for constructing examples of locally bounded V -categories:

Definition

Let U : C → D be a V -functor between cocomplete V -factegories. Then
U is an α-bounding right adjoint if U is α-bounded and has a left
adjoint whose counit is pointwise in E .

U is an α-bounding right adjoint iff U is α-bounded, has a left adjoint,
and is M -conservative, iff U is α-bounded, has a left adjoint, and reflects
E . An α-bounding right adjoint is automatically (V -)faithful.
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Bounding right adjoints

Theorem

Let C be a cocomplete V -factegory and let G ⊆ obC be a set. Then C is
locally α-bounded with enriched (E ,M )-generator G iff the nerve
yG : C → [G op,V ] is an α-bounding right adjoint.

Theorem

Let D be a locally α-bounded V -category and C a cocomplete
V -factegory. If U : C → D is an α-bounding right adjoint, then C is
locally α-bounded.
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Bounding right adjoints

Theorem

Let C be a cocomplete V -factegory. Then C is locally α-bounded iff there
exists a small V -category A and an α-bounding right adjoint
U : C → [A ,V ], i.e. a V -functor U : C → [A ,V ] that is α-bounded,
M -conservative, and has a left adjoint.

Note the parallel with Kelly’s result [5, 3.1]: a cocomplete V -category C
is locally α-presentable iff there exists a small V -category A and a
V -functor U : C → [A ,V ] that has rank α, is conservative, and has a left
adjoint.

Corollary: if C is locally α-bounded and A is small, then [A ,C ] is locally
α-bounded.
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Enriched vs. ordinary local boundedness

Recall that V is a locally α-bounded closed category with ordinary
(E ,M )-generator G .

Theorem

If C is locally α-bounded with enriched (E ,M )-generator H , then C0 is
locally α-bounded with ordinary (E ,M )-generator G ⊗H .

Theorem

If C is a cocomplete V -factegory such that C0 is locally bounded with
ordinary (E ,M )-generator H , then C is locally bounded with enriched
(E ,M )-generator H .
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A representability theorem

It is well known that if C is a locally presentable (even accessible)
category, then a functor U : C → Set is representable iff U is continuous
and has rank. We have a similar result for locally bounded categories:

Theorem

Let C be a locally bounded and E -cowellpowered V -category. If
U : C → V preserves M , then U is representable iff U is continuous and
bounded.

Jason Parker Locally bounded enriched categories



Adjoint functor theorems
Recall that a functor U : C → D between locally presentable categories
has a left adjoint iff U is continuous and has rank.

Theorem

Let C ,D be locally bounded V -categories such that C is
E -cowellpowered. If U : C → D preserves M , then U has a left adjoint iff
U is continuous and bounded.

Recall that if C is locally presentable and D arbitrary, then F : C → D
has a right adjoint iff F is cocontinuous.

Theorem (cf. [6])

Let F : C → D be a V -functor from a locally bounded V -category C to
an arbitrary V -category D . Then F has a right adjoint iff F is
cocontinuous.

(In fact, C just needs to be cocomplete V -factegory with enriched
(E ,M )-generator.)
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α-bounded-small limits

It is well known that α-small limits commute with α-filtered colimits
in any locally α-presentable category.

If V is a locally α-presentable closed category, then Kelly defined in
[4, 4.1] the notion of an α-small weight W : B → V : |obB| < α,
B(B,B ′) ∈ Vα for all B,B ′ ∈ obB, and WB ∈ Vα for all B ∈ obB.

He then showed in [4, 4.9] that α-small weighted limits commute with
conical α-filtered colimits in any locally α-presentable V -category.

If V is a locally α-bounded closed category, we can define the similar
notion of an α-bounded-small weight W : B → V .
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α-bounded-small limits

Definition

Let V be a locally α-bounded closed category. A weight W : B → V is
α-bounded-small if |obB| < α, B(B,B ′) is an enriched α-bounded
object of V for all B,B ′ ∈ obB, and WB is an enriched α-bounded object
of V for all B ∈ obB.

Kelly showed in [4, 4.3] that the saturation of the class of α-small weights
is equal to the saturation of the class of weights for α-small conical limits
and α-presentable cotensors. We similarly have:

Theorem

The saturation of the class of α-bounded-small weights is equal to the
saturation of the class of weights for α-small conical limits and α-bounded
cotensors.
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α-bounded-small limits

Definition

Let C be a complete and cocomplete V -factegory and W : B → V a
small weight. Then W -limits commute with α-filtered M -unions in C
if the W -limit V -functor {W ,−} : [B,C ]→ C is α-bounded.

Theorem

If C is a locally α-bounded V -category, then α-bounded-small weighted
limits commute with α-filtered M -unions in C .
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Reflectivity and local boundedness

Freyd and Kelly proved in [3, 4.1.3, 4.2.2] that if C is an
E -cowellpowered locally bounded ordinary category and Θ is a
“quasi-small” class of morphisms in C , then the orthogonal
subcategory Θ⊥ ↪→ C is reflective and locally bounded.

Kelly showed in [5, Chapter 6] that the reflectivity still holds even
without E -cowellpoweredness.

We have enriched both results as follows:

Theorem

Let C be a locally bounded V -category with a “quasi-small” class of
morphisms Θ. Then the enriched orthogonal sub-V -category Θ⊥V ↪→ C is
reflective, and Θ⊥V is locally bounded if C is E -cowellpowered.
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Reflectivity and local boundedness

Freyd and Kelly also proved in [3, 5.2.1, 5.2.2] that if C is a locally
bounded and E -cowellpowered ordinary category and (A ,Φ) is a limit
sketch, then Φ-Mod(A ,C ) is reflective in [A ,C ] and locally bounded.

Theorem

Let C be a locally α-bounded V -category and (A ,Φ) an enriched limit
sketch [5, 6.3]. Then the full sub-V -category Φ-Mod(A ,C ) ↪→ [A ,C ] is
reflective, and Φ-Mod(A ,C ) is also locally bounded if C is
E -cowellpowered. If every weight in Φ is α-bounded-small, then
Φ-Mod(A ,C ) is in fact locally α-bounded.

In particular, if T is a Φ-theory for a class of small weights Φ, then
Φ-Cts(T ,C ) is reflective in [T ,C ], and is locally bounded if C is
E -cowellpowered.

Jason Parker Locally bounded enriched categories



Reflectivity and local boundedness

As a corollary, we obtain the following result for the enriched algebraic
theories of Lucyshyn-Wright [8]:

Theorem

Let J ↪→ V be a small system of arities, let T be a J -theory, and let C
be a locally bounded and E -cowellpowered V -category. Then the full
sub-V -category T -Alg(C ) ↪→ [T ,C ] of the T -algebras is reflective and
locally bounded, and the forgetful V -functor UT : T -Alg(C )→ C is
monadic.

In particular, if C is a locally α-bounded and E -cowellpowered ordinary
category and T is a Lawvere theory, then the category T -Alg(C ) of
T -algebras in C is reflective in [T ,C ] and locally α-bounded, and the
forgetful functor UT : T -Alg(C )→ C is monadic.
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In summary...

We have defined a notion of locally bounded V -category over a
locally bounded closed category V , which enriches the locally
bounded ordinary categories of Freyd and Kelly, and parallels Kelly’s
notion of locally presentable V -category over a locally presentable
closed category V .

Examples of locally bounded closed categories include locally
presentable closed categories, commutative unital quantales,
topological categories over Set, and epi-cocomplete quasitoposes with
generators.

Many of the results for locally presentable enriched categories have
analogues for locally bounded enriched categories: representability
theorems, adjoint functor theorems, and commutation of suitably
small limits with suitably filtered colimits/unions.

Jason Parker Locally bounded enriched categories



In summary...

Moreover, locally bounded enriched categories admit full enrichments
of Freyd and Kelly’s reflectivity results for orthogonal subcategories
and categories of models.

Lucyshyn-Wright and I have also shown that locally bounded enriched
categories provide a fruitful setting for obtaining results on free
monads, presentations of monads, and algebraic colimits of monads
for a subcategory of arities (to be presented in forthcoming work [10]).

The content of this talk (and more!) is contained in the preprint:

I [9] Rory B.B. Lucyshyn-Wright and Jason Parker, Locally bounded
enriched categories, Preprint, arXiv:2110.07072, 2021.
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α-bounded monads?

One topic I did not touch on is the local boundedness of
Eilenberg-Moore categories. It is (well) known that if C is a locally
α-presentable V -category and T is a V -monad on C with rank α,
then the Eilenberg-Moore V -category T-Alg is locally α-presentable,
and UT : T-Alg→ C is continuous and has rank α (see [1, 6.9]).

Does an analogous result hold for α-bounded V -monads on locally
α-bounded V -categories? Essentially yes, but with some slight
subtleties/complications (to be presented in forthcoming work).
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Thank you!

E-mail: parkerj@brandonu.ca

Website: www.jasonparkermath.com
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